c06 — Fourier Transforms c06hac

nag_fft multiple_sine (c06hac)

1. Purpose

nag_fft_multiple_sine (c06hac) computes the discrete Fourier sine transforms of m sequences of real
data values.

2. Specification

#include <nag.h>
#include <nagc06.h>

void nag_fft_multiple_sine(Integer m, Integer n, double x[],
double trigl[], NagError *fail)

3. Description

Given m sequences of n — 1 real data values x?, forj=1,2,...,n—1;p=1,2,...,m, this function
simultaneously calculates the Fourier sine transforms of all the sequences defined by:

2 7r
2P — 2N 2P gin (kL fork=1,2,...,n—1;p=1,2,...,m.
L \/;ij Sln(] n)7 or [)T P y 4 , M

(Note the scale factor \/g in this definition.)

The Fourier sine transform defined above is its own inverse, and two consecutive calls of this function
with the same data will restore the original data (but see Section 6.1).

The transform calculated by this function can be used to solve Poisson’s equation when the solution
is specified at both left and right boundaries (Swarztrauber 1977).

The function uses a variant of the fast Fourier transform (FFT) algorithm (Brigham 1974) known
as the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and
post-processing stages described in Swarztrauber (1982). Special coding is provided for the factors
2,3,4,5 and 6.

4. Parameters

m
Input: the number of sequences to be transformed, m.
Constraint: m > 1.

Input: one more than the number of real values in each sequence, i.e. the number of values
in each sequence is n — 1.
Constraint: n > 1.

x[m*(n—1)]
Input: the m data sequences stored in x consecutively. If the n — 1 data values of the pth
sequence to be transformed are denoted by ac?, forj=1,2,...,n—1; p=1,2,...,m, then
the first m(n — 1) elements of the array x must contain the values

1

1 1 2 2 2
1, .., 2

m m
me1r L1 Loy, Ty gy ..y T],TH ..., T

n—1-
Output: the m Fourier sine transforms stored consecutively, overwriting the corresponding
original sequence.

trig[2+n]
Input: trigonometric coefficients as returned by a call of nag fft_init_trig (c06gzc).
nag_fft_multiple_sine makes a simple check to ensure that trig has been initialised and that
the initialisation is compatible with the value of n.

[NP3275/5/pdf] 3.c06hac. 1

nag_fft_multiple_sine NAG C Library Manual

6.1.

6.2.

8.1.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

Error Indications and Warnings

NE_INT_ARG_LT
On entry, m must not be less than 1: m = (value).
On entry, n must not be less than 1: n = (value).

NE_C06_ NOT_TRIG
Value of n and trig array are incompatible or trig array not initialized.

NE_ALLOC_FAIL
Memory allocation failed.

Further Comments

The time taken by the function is approximately proportional to nmlogn, but also depends on the
factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly
slow if n is a large prime, or has large prime factors.

Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall.

Swarztrauber P N (1977) The Methods of Cyclic Reduction, Fourier Analysis and the FACR
Algorithm for the Discrete Solution of Poisson’s Equation on a Rectangle SIAM Review 19
(3) 490-501.

Swarztrauber P N (1982) Vectorizing the FFT’s Parallel Computations G Rodrigue (ed) Academic
Press pp 51-83.

Temperton C (1983) Fast Mixed-radix Real Fourier Transforms J. Comput. Phys. 52 340—-350.

See Also
nag_fft_init_trig (c06gzc)

Example

This program reads in sequences of real data values and prints their Fourier sine transforms (as
computed by nag_fft_multiple_sine). It then calls nag_fft_multiple_sine again and prints the results
which may be compared with the original sequence.

Program Text

/* nag_fft_multiple_sine(cO6hac) Example Program

*
* Copyright 1991 Numerical Algorithms Group.
*

* Mark 2, 1991.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>

#tdefine MMAX 5
#define NMAX 20
#define X(I,J) x[(I)*row_len + (J)]

3.c06hac.2 [NP3275/5/pdf]

c06 — Fourier Transforms c06hac

main()

{
double trig[2*NMAX], x[MMAX*NMAX];
Integer i, j, m, n, row_len;

Vprintf ("cO6hac Example Program Results\n");
Vscanf (" %*["\nl"); /* Skip heading in data file */
while (scanf("%1ld %1d", &m, &n) != EOF)

if (m <= MMAX && n <= NMAX)

{
row_len = n - 1;
Vscanf (" %*["\nl"); /* Skip text in data file */
Vscanf (" %*["\nl");
for (i = 0; 1 < m; ++i)
for (j = 0; j < row_len; ++j)
Vscanf ("%1f", &X(i,j));
Vprintf ("\nOriginal data values\n\n");
for (i = 0; 1 < m; ++i)
{
for (j = 0; j < row_len; ++j)
Vprintf (" %10.4f%s", X(i,j),
(jh7==6 && j'=row_len-1 7 "\n" : ""));
Vprintf ("\n");
c06gzc(n, trig, NAGERR_DEFAULT); /* Initialise trig array */
cO6hac(m, n, x, trig, NAGERR_DEFAULT); /* Compute transform */
Vprintf ("\nDiscrete Fourier sine transforms\n\n");
for (i = 0; 1 < m; ++i)
{
for (j = 0; j < row_len; ++j)
Vprintf (" %10.4f%s", X(i,j),
(j%7==6 && j'=row_len-1 7 "\n" : ""));
Vprintf ("\n");
cO6hac(m, n, x, trig, NAGERR_DEFAULT); /* Compute inverse transform */
Vprintf ("\nOriginal data as restored by inverse transform\n\n");
for (i = 0; 1 < m; ++1i)
{
for (j = 0; j < row_len; ++j)
Vprintf (" %10.4f%s", X(i,j),
(j%7==6 && j!=row_len-1 7 "\n" : ""));
Vprintf ("\n");
}

else Vfprintf (stderr,"\nInvalid value of m or n.\n");
exit (EXIT_SUCCESS);
} /* main */

8.2. Program Data

cO6hac Example Program Data
3 6 : Number of sequences, m, (number of values in each sequence)+1l, n
Real data sequences

0.6772 0.1138 0.6751 0.6362 0.1424

0.2983 0.1181 0.7255 0.8638 0.8723

0.0644 0.6037 0.6430 0.0428 0.4815

8.3. Program Results

cO6hac Example Program Results

Original data values

0.6772 0.1138 0.6751 0.6362 0.1424
0.2983 0.1181 0.7255 0.8638 0.8723
0.0644 0.6037 0.6430 0.0428 0.4815

[NP3275/5/pdf] 3.c06hac.3

nag_fft_multiple_sine

Discrete Fourier sine transforms

1.0014 0.0062 0.0834 0.5286
1.2477 -0.6599 0.2570 0.0858
0.8521 0.0719 -0.0561 -0.4890

Original data as restored by inverse transform

0.6772 0.1138 0.6751 0.6362
0.2983 0.1181 0.7255 0.8638
0.0644 0.6037 0.6430 0.0428

[oNeoNe)

.2514
.2658
.2056

.1424
.8723
.4815

NAG C Library Manual

3.cO6hac.4

[NP3275/5/pdf]

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

